4,545 research outputs found

    Hidden variable interpretation of spontaneous localization theory

    Full text link
    The spontaneous localization theory of Ghirardi, Rimini, and Weber (GRW) is a theory in which wavepacket reduction is treated as a genuine physical process. Here it is shown that the mathematical formalism of GRW can be given an interpretation in terms of an evolving distribution of particles on configuration space similar to Bohmian mechanics (BM). The GRW wavefunction acts as a pilot wave for the set of particles. In addition, a continuous stream of noisy information concerning the precise whereabouts of the particles must be specified. Nonlinear filtering techniques are used to determine the dynamics of the distribution of particles conditional on this noisy information and consistency with the GRW wavefunction dynamics is demonstrated. Viewing this development as a hybrid BM-GRW theory, it is argued that, besides helping to clarify the relationship between the GRW theory and BM, its merits make it worth considering in its own right.Comment: 13 page

    Geometrical view of quantum entanglement

    Full text link
    Although a precise description of microscopic physical problems requires a full quantum mechanical treatment, physical quantities are generally discussed in terms of classical variables. One exception is quantum entanglement which apparently has no classical counterpart. We demonstrate here how quantum entanglement may be within the de Broglie-Bohm interpretation of quantum mechanics visualized in geometrical terms, giving new insight into this mysterious phenomenon and a language to describe it. On the basis of our analysis of the dynamics of a pair of qubits, quantum entanglement is linked to concurrent motion of angular momenta in the Bohmian space of hidden variables and to the average angle between these momenta

    Signal-Locality and Subquantum Information in Deterministic Hidden-Variables Theories

    Get PDF
    It is proven that any deterministic hidden-variables theory, that reproduces quantum theory for a 'quantum equilibrium' distribution of hidden variables, must predict the existence of instantaneous signals at the statistical level for hypothetical 'nonequilibrium ensembles'. This 'signal-locality theorem' generalises yet another feature of the pilot-wave theory of de Broglie and Bohm, for which it is already known that signal-locality is true only in equilibrium. Assuming certain symmetries, lower bounds are derived on the 'degree of nonlocality' of the singlet state, defined as the (equilibrium) fraction of outcomes at one wing of an EPR-experiment that change in response to a shift in the distant angular setting. It is shown by explicit calculation that these bounds are satisfied by pilot-wave theory. The degree of nonlocality is interpreted as the average number of bits of 'subquantum information' transmitted superluminally, for an equilibrium ensemble. It is proposed that this quantity might provide a novel measure of the entanglement of a quantum state, and that the field of quantum information would benefit from a more explicit hidden-variables approach. It is argued that the signal-locality theorem supports the hypothesis, made elsewhere, that in the remote past the universe relaxed to a state of statistical equilibrium at the hidden-variable level, a state in which nonlocality happens to be masked by quantum noise

    Existential Contextuality and the Models of Meyer, Kent and Clifton

    Full text link
    It is shown that the models recently proposed by Meyer, Kent and Clifton (MKC) exhibit a novel kind of contextuality, which we term existential contextuality. In this phenomenon it is not simply the pre-existing value but the actual existence of an observable which is context dependent. This result confirms the point made elsewhere, that the MKC models do not, as the authors claim, ``nullify'' the Kochen-Specker theorem. It may also be of some independent interest.Comment: Revtex, 7 pages, 1 figure. Replaced with published versio

    Metastatic Uterine Leiomyosarcoma in the Upper Buccal Gingiva Misdiagnosed as an Epulis

    Get PDF
    Uterine leiomyosarcoma (LMS) is a rare tumor constituting 1% of all uterine malignancies. This sarcoma demonstrates an aggressive growth pattern with an high rate of recurrence with hematologic dissemination; the most common sites are lung, liver, and peritoneal cavity, head and neck district being rarely interested. Only other four cases of metastasis in the oral cavity have been previously described. The treatment of choice is surgery and the use of adjuvant chemotherapy and radiation has limited impact on clinical outcome. In case of metastases, surgical excision can be performed considering extent of disease, number and type of distant lesions, disease free interval from the initial diagnosis to the time of metastases, and expected life span. We illustrate a case of uterine LMS metastasis in the upper buccal gingiva that occurred during chemotherapy in a 63-year-old woman that underwent a total abdominal hysterectomy with bilateral salpingo-oophorectomy for a diagnosis of LMS staged as pT2bN0 and that developed lung metastases eight months after primary treatment. Surgical excision of the oral mass (previously misdiagnosed as epulis at a dental center) and contemporary reconstruction with pedicled temporalis muscle flap was performed in order to improve quality of life. Even if resection was achieved in free margins, "local" relapse was observed 5 months after surgery

    Order in de Broglie - Bohm quantum mechanics

    Full text link
    A usual assumption in the so-called {\it de Broglie - Bohm} approach to quantum dynamics is that the quantum trajectories subject to typical `guiding' wavefunctions turn to be quite irregular, i.e. {\it chaotic} (in the dynamical systems' sense). In the present paper, we consider mainly cases in which the quantum trajectories are {\it ordered}, i.e. they have zero Lyapunov characteristic numbers. We use perturbative methods to establish the existence of such trajectories from a theoretical point of view, while we analyze their properties via numerical experiments. Using a 2D harmonic oscillator system, we first establish conditions under which a trajectory can be shown to avoid close encounters with a moving nodal point, thus avoiding the source of chaos in this system. We then consider series expansions for trajectories both in the interior and the exterior of the domain covered by nodal lines, probing the domain of convergence as well as how successful the series are in comparison with numerical computations or regular trajectories. We then examine a H\'{e}non - Heiles system possessing regular trajectories, thus generalizing previous results. Finally, we explore a key issue of physical interest in the context of the de Broglie - Bohm formalism, namely the influence of order in the so-called {\it quantum relaxation} effect. We show that the existence of regular trajectories poses restrictions to the quantum relaxation process, and we give examples in which the relaxation is suppressed even when we consider initial ensembles of only chaotic trajectories, provided, however, that the system as a whole is characterized by a certain degree of order.Comment: 25 pages, 12 figure

    Response to Comment on `Undamped electrostatic plasma waves' [Phys. Plasmas 19, 092103 (2012)]

    Full text link
    Numerical and experimental evidence is given for the occurrence of the plateau states and concomitant corner modes proposed in \cite{valentini12}. It is argued that these states provide a better description of reality for small amplitude off-dispersion disturbances than the conventional Bernstein-Greene-Kruskal or cnoidal states such as those proposed in \cite{comment

    Inflationary Cosmology as a Probe of Primordial Quantum Mechanics

    Full text link
    We show that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances and at very early times. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with non-standard field fluctuations ('quantum nonequilibrium'). We show that inflationary expansion can transfer microscopic nonequilibrium to macroscopic scales, resulting in anomalous power spectra for the cosmic microwave background. The conclusions depend only weakly on the details of the de Broglie-Bohm dynamics. We discuss, in particular, the nonequilibrium breaking of scale invariance for the primordial (scalar) power spectrum. We also show how nonequilibrium can generate primordial perturbations with non-random phases and inter-mode correlations (primordial non-Gaussianity). We address the possibility of a low-power anomaly at large angular scales, and show how it might arise from a nonequilibrium suppression of quantum noise. Recent observations are used to set an approximate bound on violations of quantum theory in the early universe.Comment: 44 pages. Minor changes in v
    • …
    corecore